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Submodular Maximization

2



Preference elicitation example

Try to identify as many as pos-
sible interesting movies for a
user in K steps.

documentary
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comedy

scifi

children

action?
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documentary ?drama?

comedy ?
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Sensor activation problem.

• 5 sensors (L = 5) whose placements is fixed (and known).

• Each area covered by a sensor is known

• Goal: Maximize the total covered area with 2 sensors
(K = 2).

L=5

2.

1.

3.

4.

5.

Optimal Solution: 2.& 3.
Greedy Solution: 1.& 2.

Because the problem is
submodular, the greedy so-
lution is optimal up to a
constant multiplicative fac-
tor (1− 1/e ≈ 0.63)
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Stochastic sensor activation problem.

• Upon activation, each sensor i cover its area with probability
pi . There is 2 states: failure or success.

• Goal: Maximize the total expected covered area with 2
sensors, chosen in advance.

L=3
p2=0.5

p1= 0.5

K=2

p3=0.1

Optimal solution: 1.& 2.
Greedy solution: 1.& 2.

Again, the greedy solution
is (1− 1/e)−optimal
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Adaptive sensor activation problem.

• Upon activation, each sensor i cover its area with probability
pi and the state of the sensor is observed.

• Goal: Maximize the total expected covered area with 2
sensors, chosen adaptively.

L=3
p2=0.5

p1= 0.5

K=2

p3=0.1

Good Policies:

Greedy is (1−1/e)−optimal
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Adaptive sensor activation problem.
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Adaptive submodular maximization

The objective is to maximize a real function of the form:

f ( A︸︷︷︸
Set of selected items

, φ︸︷︷︸
State of the L items

)→ R

• φ ∈ {−1, 1}L, where φ[i ] is the state of item i .

• φ is drawn i.i.d. from P(Φ).

An observation is a vector y ∈ {−1, 0, 1}L.

φ = ( −1, −1, 1, −1, 1 ) ← State
y = ( 0, −1, 0, −1, 1 ) ← observation
y′ = ( 0, 0, 0, −1, 0 ) ← another observation

We denote y � y′ and φ ∼ y.
The selected items of y are dom(y) = A = {2, 4, 5}.
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Adaptive submodular maximization

• a policy π : {−1, 0, 1}L → {1, . . . , L}

• πk(φ) are the first k items chosen by policy π in state φ.

The optimal K-step policy satisfies:

π∗K = arg maxπK Eφ[f (πK (φ), φ)] .

Computing π∗K is NP-hard. BUT, if the function is adaptive
submodular and adaptive monotonic...
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Assumptions

f is adaptive submodular if:

Eφ[ f (A ∪ {i}, φ)− f (A, φ) |φ ∼ yA ]

≥ Eφ[ f (B ∪ {i}, φ)− f (B, φ) |φ ∼ yB ]

i ∈ I \ B and yB � yA, where A = dom(yA) and B = dom(yB).

1.

2.
3.

1.

2.
3.

≥

A B
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The greedy policy πg

πg always selects the item with the highest expected gain:

πg (y) = arg max
i∈I\dom(y)

gi (y),

where:

gi(y) = Eφ[ f (dom(y) ∪ {i}, φ)− f (dom(y) , φ) |φ ∼ y ]

is the expected gain of choosing item i after observing y .

• πg is simple.

• Then πg is a (1− 1/e)-approximation to π∗.
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Our approach
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Our approach

Trying to mimic πg while learning Φ.

1

3 2

52 3 4

-1

-1-1

1

11

What model for Φ?

Trade-off between

• Simple model for Φ → Easy to learn

• Complex model → More realistic.
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Two models

• Assuming independence

• Modelling the dependencies.
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Independence assumption

The states of one item is independent of the others.

φ = {Bernoulli(p1),Bernoulli(p2), . . . ,Bernoulli(pL)}

→ Only L parameters to learn.

We define the expected gain as:

gi (y) = pi ḡi (y),

ḡi (y) = gain associated with state 1. (area covered if sensor is active)

• We assume is easy to compute.

• Might not even be an expectation.

1.

2.
3.
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The framework & algorithm

We repetitively play the K step game.

Input: States φ1, . . . , φn

for t = 1, 2, . . . ,n do / n episodes

1. Play the K-step game with πt

where πt(y) = arg maxi

(
p̂i (t) +

√
1

Ti (t)

)
ḡi (y)

2. Update all statistics of the model

end for

We try to design πt in order to minimize the cumulative regret

R(n) = Eφ1,...,φn

[
n∑

t=1

f (πgK(φt), φt)− f (πtK(φt), φt)

]
.
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Bound on the regret

The gap: ∆i (y) = gi∗(y)(y)− gi (y) .

Theorem

R(n) ≤
L∑

i=1

`i

K∑
k=1

Gkαi ,k︸ ︷︷ ︸
O(log n)

+O(1),

`i =Max # of wrong pulls of i

`i = max
k
`i,k and

∑K
k=1 αi,k = 1

fdg

πg

k
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Experiments on Movie-Lens
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Thank you!
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