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Submodular Maximization



Preference elicitation example
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Sensor activation problem.

e 5 sensors (L = 5) whose placements is fixed (and known).
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Sensor activation problem.

e 5 sensors (L = 5) whose placements is fixed (and known).

e Each area covered by a sensor is known
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Sensor activation problem.

e 5 sensors (L = 5) whose placements is fixed (and known).
e Each area covered by a sensor is known

e Goal: Maximize the total covered area with 2 sensors
(K =2).
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Sensor activation problem.

e 5 sensors (L = 5) whose placements is fixed (and known).
e Each area covered by a sensor is known

e Goal: Maximize the total covered area with 2 sensors
(K =2).
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Sensor activation problem.

e 5 sensors (L = 5) whose placements is fixed (and known).
e Each area covered by a sensor is known

e Goal: Maximize the total covered area with 2 sensors
(K =2).
Good Solutions:
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Optimal Solution: 2.& 3.
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Sensor activation problem.

e 5 sensors (L = 5) whose placements is fixed (and known).

e Each area covered by a sensor is known

e Goal: Maximize the total covered area with 2 sensors
(K =2).
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Sensor activation problem.

e 5 sensors (L = 5) whose placements is fixed (and known).
e Each area covered by a sensor is known

e Goal: Maximize the total covered area with 2 sensors
(K =2).
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Sensor activation problem.

e 5 sensors (L = 5) whose placements is fixed (and known).
e Each area covered by a sensor is known

e Goal: Maximize the total covered area with 2 sensors
(K =2).
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Sensor activation problem.

e 5 sensors (L = 5) whose placements is fixed (and known).

e Each area covered by a sensor is known

e Goal: Maximize the total covered area with 2 sensors
(K =2).

L=5
K=2

Good Solutions:

Optimal Solution: 2.& 3.
Greedy Solution: 1.& 2.

Because the problem is
submodular, the greedy so-
lution is optimal up to a
constant multiplicative fac-
tor (1 —1/e~0.63)



Stochastic sensor activation problem.

e Upon activation, each sensor i cover its area with probability
pi. There is 2 states: failure or success.

e Goal: Maximize the total expected covered area with 2
sensors, chosen in advance.
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Stochastic sensor activation problem.

e Upon activation, each sensor i cover its area with probability
pi. There is 2 states: failure or success.

e Goal: Maximize the total expected covered area with 2
sensors, chosen in advance.
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Adaptive sensor activation problem.

e Upon activation, each sensor i cover its area with probability
pi and the state of the sensor is observed.

e Goal: Maximize the total expected covered area with 2
sensors, chosen adaptively.
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Adaptive sensor activation problem.

e Upon activation, each sensor i cover its area with probability
pi and the state of the sensor is observed.
e Goal: Maximize the total expected covered area with 2

sensors, chosen adaptively.
Good Policies:
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Adaptive sensor activation problem.

e Upon activation, each sensor i cover its area with probability
pi and the state of the sensor is observed.
e Goal: Maximize the total expected covered area with 2

sensors, chosen adaptively.
Good Policies:
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Adaptive sensor activation problem.

e Upon activation, each sensor i cover its area with probability
pi and the state of the sensor is observed.
e Goal: Maximize the total expected covered area with 2

sensors, chosen adaptively.
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Adaptive sensor activation problem.

e Upon activation, each sensor i cover its area with probability
pi and the state of the sensor is observed.
e Goal: Maximize the total expected covered area with 2

sensors, chosen adaptively.
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Adaptive sensor activation problem.

e Upon activation, each sensor i cover its area with probability
pi and the state of the sensor is observed.
e Goal: Maximize the total expected covered area with 2

sensors, chosen adaptively.
Good Policies:
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Adaptive sensor activation problem.

e Upon activation, each sensor i cover its area with probability
pi and the state of the sensor is observed.
e Goal: Maximize the total expected covered area with 2

sensors, chosen adaptively.
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Adaptive submodular maximization
The objective is to maximize a real function of the form:

(A . o )-R

Set of selected items Giate of the L items

o ¢ € {—1,1}} where ¢[i] is the state of item i,
e ¢ is drawn i.i.d. from P(®).

An observation is a vector y € {—1,0,1}".

o =( -1, -1, 1, =1, 1 ) <« State
y =( 0, -1, 0, =1, 1 ) <« observation
y =( 0, 0, 0, =1, 0 ) <« another observation

We denotey =y’ and ¢ ~ y.
The selected items of y are dom(y) = A = {2,4,5}.



Adaptive submodular maximization

e a policy m: {~1,0,1}t — {1,...,L}

o () are the first k items chosen by policy 7 in state ¢.

The optimal K-step policy satisfies:

Th = arg maxy, Eg[f(7k(0), ¢)] .

Computing 7 is NP-hard. BUT, if the function is adaptive
submodular and adaptive monotonic...



Assumptions
f is adaptive submodular if:

Eg[f(AU{i}, ¢) — (A 0)[¢ ~ yal
> Eg[f(BU{i}, ¢) = f(B,d)| ¢ ~y5]
i€l\Bandyg > ya, where A= dom(ys) and B = dom(yg).

Py —CA

L4 ~

X s‘l- 1.
(] [}
] 1
) v 'l >
‘x ¢' - l' . ) ‘\

_———
@ =
3



Assumptions

f is adaptive submodular if:

i€l\Bandyg>ya where A= dom(ya) and B = dom(yg).

f is adaptive monotonic if

i€l\Aandyga, where A= dom(ya).



The greedy policy 78

& always selects the item with the highest expected gain:

m8(y) =arg max g(y),
(y) g, m m(y)g(y)

where:

gi(y) = Eg[ f(dom(y) U {i}, ¢) — f(dom(y),¢) | ¢ ~y]

is the expected gain of choosing item i after observing y .

o 78 is simple.

e Then 7€ is a (1 — 1/e)-approximation to 7*.
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Our approach



Our approach

Trying to mimic 78 while learning ©.

What model for ®?

Trade-off between

e Simple model for ® — Easy to learn

e Complex model — More realistic.



e Assuming independence

e Modelling the dependencies.

Two models



e Assuming independence

Two models



Independence assumption

The states of one item is independent of the others.

¢ = {Bernoulli(p1), Bernoulli(pz), . .., Bernoulli(p.)}

— Only L parameters to learn.

We define the expected gain as:

gi(y) = pigi(y),

Zi(y) = gain associated with state 1. (area covered if sensor is active)



Independence assumption

The states of one item is independent of the others.

¢ = {Bernoulli(p1), Bernoulli(pz), . .., Bernoulli(p.)}

— Only L parameters to learn.

We define the expected gain as:
gi(y) = pigi(y),
Zi(y) = gain associated with state 1. (area covered if sensor is active)

e We assume is easy to compute. (’ +

e Might not even be an expectation. =



The framework & algorithm
We repetitively play the K step game.

Input: States ¢1,..., ¢,

fort=1,2,...,ndo < n episodes
1. Play the K-step game with 7!

2. Update all statistics of the model
end for

We try to design 7! in order to minimize the cumulative regret

R(n) =Ep,...on| Y F(TE(S2), b1) — F(mi(01), 6¢)

t=1



The framework & algorithm
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The framework & algorithm
We repetitively play the K step game.

Input: States ¢1,..., ¢,

fort=1,2,...,ndo < n episodes
1. Play the K-step game with 7!

where 7f(y) = arg max; (ﬁ,(t) + 4 /ﬁ) zi(y)

2. Update all statistics of the model
end for

We try to design 7! in order to minimize the cumulative regret

R(n) =Eg,,.... [Z f(mg(p1), ot) — f(mk(9e), th)] .

t=1



Bound on the regret

The gap: Ai(y) = gi(y)(y) — &ily)

Theorem
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£; =Max # of wrong pulls of i
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Bound on the regret

The gap: Ai(y) = gi(y)(y) — &ily)

Theorem

L K
Z Z GkOé,',k +O(1),
i=1 k=1

~~

O(log n)

- E2(y)
b =8 /03 a8 + 1

é,- = mfx(,-,k and ZkK:I Qj k = 1
Gy > expected gain of & after level k



The gap: A(y)

Theorem

1<

Bound on the regret

= gi=(y)(y) — &i(y)
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Thank youl!
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