Adaptive Submodular Maximization in Bandit Settings

Joint work with Branislav Kveton, Zheng Wen, Brian Eriksson, & S. Muthukrishnan

Submodular Maximization

Try to identify as many as possible interesting movies for a user in \mathbf{K} steps.

• 5 sensors (L = 5) whose placements is fixed (and known).

- 5 sensors (L = 5) whose placements is fixed (and known).
- Each area covered by a sensor is known

- 5 sensors (L = 5) whose placements is fixed (and known).
- Each area covered by a sensor is known
- **Goal:** Maximize the total covered area with 2 sensors (K = 2).

- 5 sensors (L = 5) whose placements is fixed (and known).
- Each area covered by a sensor is known
- **Goal:** Maximize the total covered area with 2 sensors (K = 2).

• 5 sensors (L = 5) whose placements is fixed (and known).

5.

- Each area covered by a sensor is known
- **Goal:** Maximize the total covered area with 2 sensors (K = 2).

Good Solutions:

Optimal Solution: 2.& 3.

- 5 sensors (L = 5) whose placements is fixed (and known).
- Each area covered by a sensor is known
- **Goal:** Maximize the total covered area with 2 sensors (K = 2).

Good Solutions:

Optimal Solution: 2.& 3. **Greedy** Solution:

- 5 sensors (L = 5) whose placements is fixed (and known).
- Each area covered by a sensor is known
- **Goal:** Maximize the total covered area with 2 sensors (K = 2).

Good Solutions:

Optimal Solution: 2.& 3. **Greedy** Solution: 1.

- 5 sensors (L = 5) whose placements is fixed (and known).
- Each area covered by a sensor is known
- **Goal:** Maximize the total covered area with 2 sensors (K = 2).

Good Solutions:

Optimal Solution: 2.& 3. **Greedy** Solution: 1.& 2.

- 5 sensors (L = 5) whose placements is fixed (and known).
- Each area covered by a sensor is known
- **Goal:** Maximize the total covered area with 2 sensors (K = 2).

Good Solutions:

Optimal Solution: 2.& 3. **Greedy** Solution: 1.& 2.

Because the problem is submodular, the greedy solution is optimal up to a constant multiplicative factor $(1-1/e \approx 0.63)$

Stochastic sensor activation problem.

- Upon activation, each sensor *i* cover its area with probability *p_i*. There is 2 **states**: failure or success.
- **Goal:** Maximize the total **expected** covered area with 2 sensors, **chosen in advance**.

Stochastic sensor activation problem.

- Upon activation, each sensor *i* cover its area with probability *p_i*. There is 2 **states**: failure or success.
- **Goal:** Maximize the total **expected** covered area with 2 sensors, **chosen in advance**.

Good Solutions:

Optimal solution: 1.& 2. **Greedy** solution: 1.& 2.

Again, the greedy solution is (1-1/e)-optimal

- Upon activation, each sensor *i* cover its area with probability *p_i* and the state of the sensor is **observed**.
- **Goal:** Maximize the total **expected** covered area with 2 sensors, **chosen adaptively**.

- Upon activation, each sensor *i* cover its area with probability *p_i* and the state of the sensor is **observed**.
- **Goal:** Maximize the total **expected** covered area with 2 sensors, **chosen adaptively**.

- Upon activation, each sensor *i* cover its area with probability *p_i* and the state of the sensor is **observed**.
- **Goal:** Maximize the total **expected** covered area with 2 sensors, **chosen adaptively**.

- Upon activation, each sensor *i* cover its area with probability *p_i* and the state of the sensor is **observed**.
- **Goal:** Maximize the total **expected** covered area with 2 sensors, **chosen adaptively**.

- Upon activation, each sensor *i* cover its area with probability *p_i* and the state of the sensor is **observed**.
- **Goal:** Maximize the total **expected** covered area with 2 sensors, **chosen adaptively**.

- Upon activation, each sensor *i* cover its area with probability *p_i* and the state of the sensor is **observed**.
- **Goal:** Maximize the total **expected** covered area with 2 sensors, **chosen adaptively**.

- Upon activation, each sensor *i* cover its area with probability *p_i* and the state of the sensor is **observed**.
- **Goal:** Maximize the total **expected** covered area with 2 sensors, **chosen adaptively**.

Good Policies:

Greedy is (1-1/e)-optimal

Adaptive submodular maximization

The objective is to maximize a **real** function of the form:

- $\phi \in \{-1,1\}^{L}$, where $\phi[i]$ is the state of item *i*.
- ϕ is drawn i.i.d. from $P(\Phi)$.

An observation is a vector $\mathbf{y} \in \{-1, 0, 1\}^L$.

We denote $\mathbf{y} \succeq \mathbf{y}'$ and $\phi \sim \mathbf{y}$. The selected items of \mathbf{y} are $\operatorname{dom}(\mathbf{y}) = A = \{2, 4, 5\}$.

Adaptive submodular maximization

- a policy $\pi: \{-1, 0, 1\}^L \to \{1, \dots, L\}$
- $\pi_k(\phi)$ are the first k items chosen by policy π in state ϕ .

The optimal K-step policy satisfies:

$$\pi_{\mathcal{K}}^* = {\sf arg\,max}_{\pi_{\mathcal{K}}} \, \mathbb{E}_{\phi}[f(\pi_{\mathcal{K}}(\phi),\phi)] \, .$$

Computing π_K^* is NP-hard. **BUT**, if the function is adaptive submodular and adaptive monotonic...

Assumptions

f is adaptive submodular if:

$$\begin{split} \mathbb{E}_{\phi}[\,f(\textbf{\textit{A}} \cup \{i\}, \phi) - f(\textbf{\textit{A}}, \phi) \,|\, \phi \sim \textbf{y}_{\textbf{\textit{A}}}\,] \\ & \geq \mathbb{E}_{\phi}[\,f(\textbf{\textit{B}} \cup \{i\}, \phi) - f(\textbf{\textit{B}}, \phi) \,|\, \phi \sim \textbf{y}_{\textbf{\textit{B}}}\,] \end{split}$$

 $i \in I \setminus B$ and $\mathbf{y}_B \succeq \mathbf{y}_A$, where $A = \operatorname{dom}(\mathbf{y}_A)$ and $B = \operatorname{dom}(\mathbf{y}_B)$.

Assumptions

f is adaptive submodular if:

$$\mathbb{E}_{\phi}[f(\boldsymbol{A} \cup \{i\}, \phi) - f(\boldsymbol{A}, \phi) | \phi \sim \mathbf{y}_{\boldsymbol{A}}] \\ \geq \mathbb{E}_{\phi}[f(\boldsymbol{B} \cup \{i\}, \phi) - f(\boldsymbol{B}, \phi) | \phi \sim \mathbf{y}_{\boldsymbol{B}}]$$

 $i \in I \setminus B$ and $\mathbf{y}_B \succeq \mathbf{y}_A$, where $A = \operatorname{dom}(\mathbf{y}_A)$ and $B = \operatorname{dom}(\mathbf{y}_B)$.

f is adaptive monotonic if

$$\mathbb{E}_{\phi}[f(A \cup \{i\}, \phi) - f(A, \phi) | \phi \sim \mathbf{y}_{A}] \geq \mathbf{0}$$

 $i \in I \setminus A$ and \mathbf{y}_A , where $A = \operatorname{dom}(\mathbf{y}_A)$.

The greedy policy π^g

 π^{g} always selects the item with the highest expected gain:

$$\pi^{g}(\mathbf{y}) = rg\max_{i \in I \setminus \operatorname{dom}(\mathbf{y})} g_{i}(\mathbf{y}),$$

where:

$$g_{\mathbf{i}}(\mathbf{y}) = \mathbb{E}_{\phi}[f(\operatorname{dom}(\mathbf{y}) \cup \{\mathbf{i}\}, \phi) - f(\operatorname{dom}(\mathbf{y}), \phi) \,|\, \phi \sim \mathbf{y}\,]$$

is the *expected gain* of choosing item i after observing \mathbf{y} .

• π^g is simple.

• Then
$$\pi^g$$
 is a $(1-1/e)$ -approximation to π^* .

The greedy policy π^g

 π^{g} always selects the item with the highest expected gain:

$$\pi^{g}(\mathbf{y}) = rg\max_{i \in I \setminus \operatorname{dom}(\mathbf{y})} g_{i}(\mathbf{y}),$$

where:

$$g_{\mathbf{i}}(\mathbf{y}) = \mathbb{E}_{\phi}[f(\operatorname{dom}(\mathbf{y}) \cup \{\mathbf{i}\}, \phi) - f(\operatorname{dom}(\mathbf{y}), \phi) \,|\, \phi \sim \mathbf{y}\,]$$

is the *expected gain* of choosing item i after observing \mathbf{y} .

• π^g is simple.

• Then
$$\pi^g$$
 is a $(1-1/e)$ -approximation to π^* .

Our approach

Our approach

Trying to **mimic** π^g while **learning** Φ .

What model for Φ ?

Trade-off between

- Simple model for $\Phi \to \mathsf{Easy}$ to learn
- Complex model \rightarrow More realistic.

Two models

• Assuming independence

• Modelling the dependencies.

Two models

• Assuming independence

• Modelling the dependencies.

Independence assumption

The states of one item is independent of the others.

 $\phi = \{Bernoulli(p_1), Bernoulli(p_2), \dots, Bernoulli(p_L)\}$

 \rightarrow Only *L* parameters to learn.

We define the expected gain as:

 $g_i(\mathbf{y})=p_i\bar{g}_i(\mathbf{y}),$

 $\bar{g}_i(\mathbf{y}) =$ gain associated with state 1. (area covered if sensor is active)

Independence assumption

The states of one item is independent of the others.

 $\phi = \{Bernoulli(p_1), Bernoulli(p_2), \dots, Bernoulli(p_L)\}$

 \rightarrow Only *L* parameters to learn.

We define the expected gain as:

$$g_i(\mathbf{y})=p_i\bar{g}_i(\mathbf{y}),$$

 $\bar{g}_i(\mathbf{y}) =$ gain associated with state 1. (area covered if sensor is active)

- We assume is easy to compute.
- Might not even be an expectation.

The framework & algorithm

We repetitively play the \mathbf{K} step game.

Input: States ϕ_1, \dots, ϕ_n for $t = 1, 2, \dots, n$ do $\triangleleft n$ episodes 1. Play the K-step game with π^t

2. Update all statistics of the model end for

We try to design π^t in order to minimize the **cumulative regret**

$$R(n) = \mathbb{E}_{\phi_1,\ldots,\phi_n}\left[\sum_{t=1}^n f(\pi_{\mathsf{K}}^g(\phi_t),\phi_t) - f(\pi_{\mathsf{K}}^t(\phi_t),\phi_t)\right].$$

The framework & algorithm

We repetitively play the \mathbf{K} step game.

Input: States ϕ_1, \dots, ϕ_n for $t = 1, 2, \dots, n$ do $\triangleleft n$ episodes 1. Play the K-step game with π^t where $\pi^t(\mathbf{y}) = \arg \max_i \widehat{g}_i(\mathbf{y})$ (upper bound on $g_i(\mathbf{y})$) 2. Update all statistics of the model end for

We try to design π^t in order to minimize the **cumulative regret**

$$R(n) = \mathbb{E}_{\phi_1,\ldots,\phi_n}\left[\sum_{t=1}^n f(\pi_{\mathsf{K}}^g(\phi_t),\phi_t) - f(\pi_{\mathsf{K}}^t(\phi_t),\phi_t)\right].$$

The framework & algorithm

We repetitively play the \mathbf{K} step game.

Input: States ϕ_1, \ldots, ϕ_n for $t = 1, 2, \ldots, n$ do $\triangleleft n$ episodes 1. Play the K-step game with π^t where $\pi^t(\mathbf{y}) = \arg \max_i \left(\widehat{p}_i(t) + \sqrt{\frac{1}{T_i(t)}} \right) \overline{g}_i(\mathbf{y})$ 2. Update all statistics of the model end for

We try to design π^t in order to minimize the **cumulative regret**

$$R(n) = \mathbb{E}_{\phi_1,\ldots,\phi_n}\left[\sum_{t=1}^n f(\pi_{\mathsf{K}}^g(\phi_t),\phi_t) - f(\pi_{\mathsf{K}}^t(\phi_t),\phi_t)\right].$$

The gap:
$$\Delta_i(\mathbf{y}) = g_{i^*(\mathbf{y})}(\mathbf{y}) - g_i(\mathbf{y}) \qquad .$$
Theorem

$$R(n) \leq \sum_{\substack{i=1 \\ i=1 \\ O(\log n)}}^{L} \ell_i \sum_{\substack{k=1 \\ O(\log n)}}^{K} G_k \alpha_{i,k} + O(1),$$

$$\ell_i = Max \ \# \ of \ wrong \ pulls \ of \ i$$

The gap:
$$\Delta_{i}(\mathbf{y}) = g_{i^{*}(\mathbf{y})}(\mathbf{y}) - g_{i}(\mathbf{y})$$

Theorem

$$R(n) \leq \sum_{i=1}^{L} \ell_{i} \sum_{k=1}^{K} G_{k} \alpha_{i,k} + O(1),$$

$$\ell_{i,k} = 8 \max_{\mathbf{y} \in \mathcal{Y}_{k,i}} \frac{\bar{g}_{i}^{2}(\mathbf{y})}{\Delta_{i}^{2}(\mathbf{y})} \log n + 1,$$

$$\ell_{i} = \max_{k} \ell_{i,k} \text{ and } \sum_{k=1}^{K} \alpha_{i,k} = 1$$

$$G_{k} = (K - k + 1) \max_{\mathbf{y} \in \mathcal{Y}_{k}} \sum_{i=1}^{K} \alpha_{i,k} = 1$$

Experiments on Movie-Lens

Thank you!